Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int. j. morphol ; 37(3): 1058-1066, Sept. 2019. graf
Article in Spanish | LILACS | ID: biblio-1012396

ABSTRACT

El consumo de fructosa ha aumentado en los últimos 50 años por la incorporación a la dieta de jarabe de maíz alto en fructosa (JMAF), presente en productos industrializados, como las bebidas azucaradas. Se puede asociar la ingesta de fructosa en altas concentraciones con el aumento de la obesidad y trastornos metabólicos. La fructosa, un azúcar natural que se encuentra en muchas frutas, se consume en cantidades significativas en las dietas occidentales. En cantidades iguales, es más dulce que la glucosa o la sacarosa y, por lo tanto, se usa comúnmente como edulcorante. Debido al incremento de obesidad entre la población joven y general y a los efectos negativos que puede tener a corto y largo plazo es importante considerar de donde provienen las calorías que se ingieren diariamente. Esta revisión describirá la relación entre el consumo de fructosa en altas concentraciones y el riesgo de desarrollar obesidad, resistencia a la insulina, lipogenesis de novo e inflamación.


The consumption of fructose has increased in the last 50 years due to the incorporation into the diet of high fructose corn syrup (HFCS), present in industrialized products, such as sugary drinks. The intake of fructose in high concentrations can be associated with the increase of obesity and metabolic disorders. Fructose, a natural sugar found in many fruits, is consumed in significant quantities in Western diets. In equal amounts, it is sweeter than glucose or sucrose and, therefore, is commonly used as a sweetener. Due to the increase of obesity among the young and general population and the negative effects that can have in the short and long term it is important to consider where the calories that are ingested daily come from. This review will describe the relationship between fructose consumption in high concentrations and the risk of developing obesity, insulin resistance, de novo lipogenesis, nonalcoholic fatty liver, inflammation and metabolic syndrome.


Subject(s)
Humans , Animals , Sweetening Agents/adverse effects , Insulin Resistance , Adipose Tissue/drug effects , Fructose/adverse effects , Obesity/chemically induced , Sweetening Agents/metabolism , Beverages , Body Weight/drug effects , Lipogenesis/drug effects , Fructose/metabolism , Glucose/adverse effects , Inflammation
2.
Braz. j. med. biol. res ; 49(8): e5409, 2016. graf
Article in English | LILACS | ID: lil-787387

ABSTRACT

Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific influence on white adipose tissue, fat cells are possible targets of pharmacological RAS blockers commonly used as anti-hypertensive drugs. In the present study, we investigated the effects of different RAS blockers on fat cell metabolism, more specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated primary adipocytes were incubated with different RAS blockers (aliskiren, captopril and losartan) in vitro for 24 h and lipolysis, lipogenesis and glucose oxidation capacities were determined in dose-response assays to a β-adrenergic agonist and to insulin. Although no change was found in lipolytic capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different way. While captopril decreased insulin-stimulated lipogenesis (−19% of maximal response and −60% of insulin responsiveness) due to reduced glucose derived glycerol synthesis (−19% of maximal response and 64% of insulin responsiveness), aliskiren increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers can differentially induce metabolic alterations in adipocyte metabolism, characterized by a reduction in lipogenic responsiveness or an increase in glucose oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial implications on metabolic disorders during their therapeutic use in hypertensive patients.


Subject(s)
Animals , Male , Renin-Angiotensin System/drug effects , Adipocytes/drug effects , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Rats, Wistar , Adipocytes/metabolism , Losartan/pharmacology , Lipogenesis/drug effects , Fumarates/pharmacology , Amides/pharmacology , Glucose/metabolism , Glycerol/metabolism , Lipolysis/drug effects
3.
Experimental & Molecular Medicine ; : 205-215, 2011.
Article in English | WPRIM | ID: wpr-187632

ABSTRACT

Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 microg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 microg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARgamma and C/EBPalpha expression as shown in in vitro and in vivo, and the suppression of PPARgamma activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue, White , Anti-Obesity Agents/administration & dosage , Body Weight/drug effects , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation/drug effects , Eating/drug effects , Fatty Acids/metabolism , Gene Expression/drug effects , Lipid Metabolism/drug effects , Lipids , Lipogenesis/drug effects , Mice, Inbred C57BL , Obesity/prevention & control , PPAR gamma/antagonists & inhibitors , Plant Extracts/pharmacology , Plants, Medicinal , Primulaceae/chemistry
4.
Indian J Physiol Pharmacol ; 2008 Apr-Jun; 52(2): 132-40
Article in English | IMSEAR | ID: sea-107409

ABSTRACT

The effect of two different doses (1 microg Se/Kg and 50 microg Se/Kg Body wt) of selenium on nicotine induced hyperlipidemia was investigated in rats. Results revealed that nicotine intake caused an increase in concentration of cholesterol, triglycerides, free fatty acids, phospholipids and low density lipoprotein compared to control group. Coadministration of selenium along with nicotine reduced the levels of lipids compared to nicotine group. This reduction was due to reduction in the biosynthesis of lipids as evidenced by the reduced activity of HMGCoA reductase and lipogenic enzymes. Nicotine intake also reduced the absorption of selenium in the intestine. Histopathological studies revealed that selenium at a dose of 1 microg was more effective in reducing lipid levels and higher dose of selenium was toxic.


Subject(s)
Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hyperlipidemias/chemically induced , Intestinal Absorption , Intestines/metabolism , Lipids/blood , Lipogenesis/drug effects , Liver/drug effects , Male , Nicotine , Rats , Rats, Sprague-Dawley , Sodium Selenite/metabolism
5.
Genet. mol. res. (Online) ; 6(1): 214-221, 2007. tab, graf
Article in English | LILACS | ID: lil-456767

ABSTRACT

Cultures of adipose tissue explants are a valuable tool for studying the intracellular mechanisms involving hormones and nutrients. However, testing how fatty acids affect cells requires a carrier molecule; bovine serum albumin (BSA) has been used for this purpose. However, contaminants can alter the cellular response. Our objectives were to: 1) test BSA as a fatty acid carrier and 2) evaluate polyvinyl alcohol (PVA) as a replacement for BSA. Adipose tissue explants from nine pigs were cultured in medium 199 for 4, 12, 24, and 48 h, with the following treatments: control, PVA (100 mM PVA added) and PVA + pGH (100 mM PVA plus 0.1 mg/mL porcine growth hormone). After each culture period, explants were collected and assayed for lipogenesis. After 48 h in culture, explants were assayed for lipolysis. A preliminary study with different commercial sources and high concentrations showed that BSA affected lipogenic rates. On the other hand, there were no effects of PVA on lipid synthesis, while pGH (positive control) reduced glucose incorporation into lipids (P < 0.01) when compared to both control and PVA (P < 0.05). There was no difference between control and PVA for lipolysis rates. However, pGH increased lipolysis when compared to control (P < 0.01) and PVA (P < 0.05). We demonstrated that BSA can alter lipogenesis, which precludes its use as a carrier molecule. On the other hand, addition of PVA had no effect on lipolysis or lipogenesis. We suggest the use of PVA instead of BSA for adding bioactive fatty acids to cultures of adipose tissue


Subject(s)
Animals , Male , Cattle , Adipose Tissue/metabolism , Fatty Acids/metabolism , Lipogenesis/drug effects , Lipolysis/drug effects , Polyvinyl Alcohol/pharmacology , Tissue Culture Techniques/veterinary , Adipose Tissue/drug effects , Serum Albumin, Bovine , Swine , Time Factors , Tissue Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL